

Online Lab Sections with the IOLab & Remotely Operated Experiments in 1st yr. Physics

The Course

PHYS 1100 is a one-semester algebrabased course with mechanics and E & M.

<u>Format</u>: students take (any permutation)

Lecture

- on campus & on campus
 - online (this poster)
- online hvbrid

Online Labs (9 total) - avail. since 2017

- 7 using IOLab
- · 2 remotely operated
- content & sequence parallel on-campus sections

Pre-lab Assignment

- Available Sunday, due Wednesday
- Equips students with theory, orientation and analysis tools

Lab Experiment & Report

- Available upon pre-lab submission
- due Sunday
- · Students make prediction, perform experiment, write discussion incl. uncertainty

Learning Progression

Early Labs

- · Student lab reports are heavily guided
- · progressively freer in format
- · progression in student expectations

	#	Topic	Experiment	mode	Pre-lab activity	Lab activity	Other Skills	Notes
ſ	1	Uniform Motion	Students explore motion in one dimension and its graphical representation.	IOLab	Explore x(t) graphs of objects in motion Install the IOLab software on own device Explore the basic functions/sensors of IOLab	Given sketches of x(t) graphs 1. reproduce graphs by moving IOLab accordingly.	Connecting physical motion to its graphical representation and vice versa.	This pre-lab is longer than most and is spread over 2 weeks.
	2	Acceleration	Students explore how position and velocity change with time for various types of motion in 1D.	IOLab	Match a described motion with x(t) and v(t) graphs Introduction to measurement uncertainties and their propagation	Students push the IOLab up a ramp to 1. produce x(t) and v(t) graphs 2. determine the acceleration and ramp angle	Comparing obtained graphs with prediction. Start work with uncertainties.	Students construct/improvise a ramp with household items.
	3	Freefall	Students send IOLab in freefall. Graphical analysis yields g.	IOLab	Tutorial on data tables, graphing with error bars and interpreting linear graphs Setting up the freefall experiment with IOLab	Drop IOLab onto a cushion from different heights Measure time of freefall using accelerometer to plot a graph whose slope is predicted to be g/2	Constructing data tables Graphing with error bars Interpreting linear graphs	Students write discussion by filling in blanks as prompted.
	4		Students launch IOLab over edge of table.	IOLab	Explore projectile motion from a horizontal platform using a simulation Prepare and practice launching IOLab from table while taking data	Predict projectile range from table height and IOLab's speed at launch Measure range from landing location	Uncertainty propagation Do measured result and prediction agree within uncertainty?	Students write discussion by filling in blanks as prompted.
	5	Acceleration on an Incline	Students roll cart down inclined track using remote control.	remote	Simulation assisted tutorial to derive "a = g sin θ", with uncertainties Tutorial on operation of remote equipment	Predict acceleration from height and length of track Measure acceleration from slope of v(t) graph	Uncertainty propagation Do measured result and prediction agree within uncertainty?	Students write discussion from scratch based on experience with prior labs.
	6		Students swing IOLab around in circle on a string while force sensor measures tension.	IOLab	Simulation assisted tutorial on uniform circular motion Tutorial on using IOLab force sensor	Measure period and radius to calculate speed, centripetal acceleration and force. Measure centripetal force using force sensor	Uncertainty propagation Do measured result and prediction agree within uncertainty?	Decreasing guidance given. Students have opportunity to discuss many potential sources of error.
ı	7	Impulse and Momentum	Students bounce IOLab cart w/ spring bumper off a solid object.	IOLab	Students prepare and practice the collision while taking data	Change in velocity is compared to the area under F(t) graph	Interpreting v(t) and F(t) graphs for momentum and impulse	Students perform calculations and writ discussion independently.
ı	8	Conservation of Mechanical Energy	Students roll IOLab as a roller coaster.	IOLab	Roller coaster simulation, with friction Students prepare a roller coaster-like track for IOLab	IOIab is sent down track and 1. calculate total energy from height and speed data	Performing relevant calculation and comparisons with minimal guidance	Energy is usually not conserved, as see in pre-lab simulations.

Invented by physicists Mats Selen & Tim Stelzer

Built in sensors include:

- · 3D accelerometer
- · 3D magnetometer
- 3D gyroscope
- Optical encoder wheel (rolls as cart)
- Force probe
- · Light intensity sensor
- Atmospheric pressure sensor
- Temperature sensor
- Microphone

- 6 analog inputs
- 6 digital inputs
- · DC coupled high gain differential amp
- DAC output

Determining g from Freefall

Uniform Circular Motion

Encourage more interaction

- Peer-to-peer (e.g. online forum)
- Student-instructor (videoconference)

Building own CloudLab units

• Expts that work better as remote

New partner institutions

Library handles lab kit loans

e/m - Electron Charge to Mass Ratio

Equipment located 150 km away at North Island College (Comox, BC) are operated remotely by students through the internet.

Expts

10Lab

Sample

RWSL/NANSLO facility includes lab equipment for Physics, Chemistry & Biology and are described further at

http://www.nic.bc.ca/rwsl and http://www.wiche.edu/nanslo

This unit is located at KPU-Richmond (new)

Cart on Inclined Track

Plans

Future

takashi.sato@kpu.ca 604-599-2656 jillian.lang@kpu.ca 604-599-2455 Handouts, lab manuals and more at http://www.kpu.ca/physics/sato/CAPHalifax

